

LC1206A

具有交流零點指示輸出的 AC/DC 開闢電源控制器集成電路

主要特點

- ▼ 內置交流過零检测及零点信號輸出
- v 支持初級穩壓或次級穩壓
- ▼ 內置 800V 高壓功率開關
- ▼ 內置高壓快速啟動電流源
- ▼ 系統待機功耗可低至 0.10W
- ▼ 內置過壓、欠壓與短路保護功能
- ▼ 精確溫度補償,精確逐週期電流控制
- ∨ 智能自適應 OTP 過溫度保護功能
- ▼ 轉換效率滿足能源之星 2013-V5 要求
- ∨ 宽電網電壓輸出功率 6W,峰值输出 8W
- ▼ 機少外圍元件,低整機成本,高可靠性

應用領域

- 2 家電控制器電源
- 2 電器控制器電源
- 2 小家電電源

概述

LC1206A 為高性能、電流模式 PWM 高壓開關控制器集成電路, 專為家電控 制器電源設計。芯片具有獨特的交流電 壓過零信號檢測與輸出控制電路, 可輸 出同步的交流電壓過零信號用於對繼電 器、可控硅等進行過零切換控制,從而 提高系統的可靠性,降低切換損耗,延 長繼電器壽命。高集成的設計則極大地 簡化了電路結構,降低了系統成本。內 置 800V高耐壓功率開關, 在 90-300V 的寬電網電壓範圍內提供高達 6W 的連 續輸出功率。高性價比的雙極型製作工 藝生產的控制芯片,結合高壓功率管的 一體化封裝最大程度上節約了產品的整 體成本。該電源控制器可工作於典型的

反激電路拓撲中, 構成簡潔的AC/DC電源 轉換器。

通過對 AC 電壓波形的分析,內部 電路會驅動一個集電極開路的三極管在 AC 電壓的每個過零點輸出一個穩定的 上升波形,從而在外部通過一個光耦準 確輸出過零信號給 MCU 系統。

工作於初級穩壓疾式時獨特的直 接反饋控制大幅提高了系統響應突發負 載的速度和能力,避免了傳統的PSR結構 的負載電壓跳變現象:工作於次級反饋 模式時則可精確的控制輸出電壓精度。

專有的驅動電路使開關管始終工 作於
歸界飽和狀態,提高了系統的工作 效率, 使系統可以輕鬆滿足"能源之 星"等關於待機功耗和效率的認證要 求。

IC 內部還提供了完善的過載與短 路保護功能,可對輸出過載、輸出短路 等異常狀況進行快速保護,提高了電源 的可靠性。IC內部還集成了過溫度保護 功能, 在芯片過熱的情況下降低工作頻 率或關閉輸出。

現可提供滿足ROHS標準及綠色環 保要求 DIP7 標準封裝產品。



圖1. 典型電路

内部功能框圖

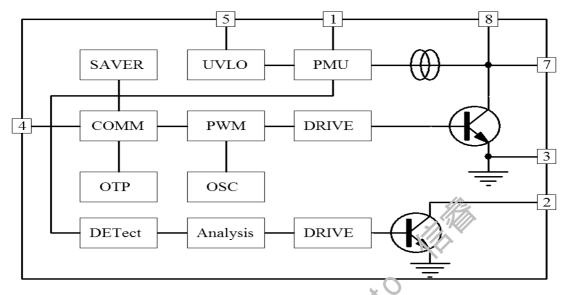


圖 2. 内部框图

引腳定義圖:

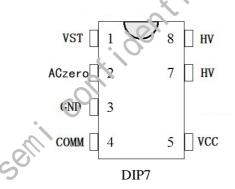


圖 3. 引腳定義

引腳功能描述

管腳号	符號	管 腳 定 義 描 述
1	VST	高壓電流源觸發與交流過零檢測輸入,外接電阻到交流電壓
2	ACzero	交流電壓過零信號輸出,外接輸出光耦
3	GND	接地腳
4	СОММ	誤差放大器補償腳,外接補償電阻電容網絡
5	VCC	供電腳
7,8	HV	高壓開關輸出腳,接變壓器初級線圈

極限參數

項目	參數	單位
供電電壓 VCC	18	V
引腳輸入電壓	VCC ^{+0.3}	V
HV 引腳電壓	−0.3à800	V
峰值開關電流	1000	mA
允許耗散功率	1500	mW
最大結溫範圍	150	$^{\circ}$
工作溫度範圍	−20 à +125	$^{\circ}$
儲存溫度範圍	−55 à +150	°C
推薦焊接溫度	+260℃,10 S	

推薦工作條件

項目	最小	典型	最大	單位
引腳輸入電壓	-0.3	-	VCC	V
峰值反向電壓	-	. 7	650	V
峰值開關電流	-	7 7	300	mA
工作溫度	-10	-	100	${\mathbb C}$

電氣參數 (無標注時均按 Ta=25℃) 功率開關部分:

符號	說明	測試條件	最小	典型	最大	單位
Вну	HV 腳最大耐壓	V_{cc} =0V, I_{HV} =1mA	750	800		V
V_{HVON}	導通飽和壓降	$I_{HV}=300mA$			3.0	V
Tr _{HV}	開關上升時間	CL=1nF	-	-	75	nS
Tf _{HV}	開關下降時間	CL=1nF	-	-	75	nS
Toffdelay	開關關斷延時	Lp=2.5mH	-	-	500	nS
l _{CHG}	高壓啟動電流源	R_{VST} =3.0Meg. Ω	-	0.5	-	mA

零點檢測與輸出部分:

符號	說明	測試條件	最小	典型	最大	單位
V_{THAC}	AC 過零檢測門限		-0.6	-	+0.6	V
UO _L	ACzero 輸出低電平	I _{ACzero} =5mA	-	-	0.3	V
T _{ACZ1}	ACzero 輸出延時	After AC=Cross		0.5		mS
T _{ACZ2}	ACzero 輸出超前	Before AC=Cross		0.5		mS

振蕩器部分:

符號	說明	測試條件	最小	典型	最大	單位
Fs	振盪頻率		-	65	-	kHz
ΔFsv	頻率隨電壓變化率	Vcc=5-9V	-	-	1	%
ΔFs _T	頻率隨溫度變化率	Ta=0-85°C	-	-	1	%

PWM 部分:

符號	說明	測試條件	最小	典型	最大	單位
D _{MIN}	最小開通占空比	VFB=0V		1.5		%
D_{MAX}	最大開通占空比	VFB>2.5V	60	65//	70	%

電流限制部分:

符號	說明	測試條件	最小	典型	最大	單位
LIMIT	峰值開關電流		0. 28	0.32	0.35	Α
G _{vcc}	電流抑制比	*.'0		60	70	dB
TILD	傳輸延時	10:0		150	250	nS
T_{LEB}	前沿消隱時間	00	-	400	-	nS

補償部分:

符號	說明	測試條件	最小	典型	最大	單位
I comm	補償充電電流		-	0.60	-	mA
R _{comm}	補償等效電回		-	30	-	ΚΩ
G _{vcc}	電源抑制比	V _{cc} =5-9V	-	60	70	dB

電源部分:

符號	說明	測試條件	最小	典型	最大	單位
I _{ST}	啟動靜態電流		=	10	50	uA
ΙQ	靜態電流	V _{cc} =7.5V	-	2.4	-	mA
V_{ST}	啟動電壓		-	9.0	-	V
V_{STOP}	欠壓保護點		-	4.4	-	V
V_{RST}	重啟動電壓		-	2.0	-	٧
V_{sz}	VCC 限制電壓		9.5	10	10.5	V

功能與應用描述

1、啟動控制

系統上電時,輸入電壓經過 VST 電阻進入芯片內部,產生觸發信號 I₆,同時高壓直流經過變壓器初級繞組施加到芯片內部與 HV 端子相連的高壓電流源 I_{CHC} 電路,I₆ 觸發電流源工作產生初始充電電流 I_{CHC}經過內部電源管理單元對 VCC電容進行充電,當 VCC電壓被充電至 9.0V時控制電路將依次打開參考電路、振盪器電路等,輸出驅動開始輸出脉衝打開功率開關,芯片啟動結束,開始進入正常工作。

使用中應考慮啟動電阻具有足夠的 耐壓能力,對於 90-300Vac 的電網範圍, 推薦的做法是使用兩個 1206 型的點片電 阻串聯使用。

2、VCC 反饋 PWM 控制

芯片啟動完成后,VCC 電壓被內部分 壓到誤差放大器輸入端,與內部參考電 壓比較后從 COMM 端子輸出,COMM 端子電 壓經過再次分壓從而決定每個開關週期 的電流大小;當 VCC 電壓趨向于升高時 誤差放大器自動降低輸出電壓使得開關 電流趨向于減小,反之則自動升高輸出 電壓使得開關電流趨向于增加,因此實 現了穩定的 VCC 電壓值,輸出電壓因此 被恒定在一個指定的大小。 VCC 反饋電壓的典型值大小為 10V.

VCC 端子在用於反饋輸入的同時也用於對芯片進行供電,因此應合理選擇VCC 電容的大小,一般的應用中的推薦VCC 電容容量應為 22uF.

當系統工作于次級反饋模式時,應確保 VCC 電壓不會達到 10V,否則輸出功率將會被限制。 建議一般應用中將 VCC 電壓設置在 5.5V-6.5V.

3、AC 過零信號檢測與輸出

适過 VST 電阻,內部電路可對 AC 電壓的實時波形採樣生成 AC 電壓過零信號,通過一個外部光耦即可將過零信號準確輸出至 MCU 系統電路,實現繼電器或可控硅器件的過零開關功能,從而大幅延長繼電器的使用壽命,驅動光耦的電流可由外部電阻靈活設定,從而可靠地兼容不同的光耦器件。

受益于內部電路的合理設計,同時使得AC過零檢測的檢測損耗可低至10mW以下,因此可使用極高阻值的檢測電阻,例如 2MΩ,光耦驅動的限流電阻則可使用 2kΩ 左右電阻,即可很好地兼容市場上的各種規格的光耦器件。

4、外部補償電路

系統反饋時的誤差信號經由 COMM 端

子輸出,使用時應在外部連接一個阻容 補償網絡以對誤差放大器進行補償,從 而穩定反饋信號,使反饋信號變化趨向 于平滑,避免反饋的劇烈跳變產生的噪 聲及不穩定現象。

典型的補償電容應在 47nF-100nF 之間,在一般的應用中,推薦使用 100nF 的電容;在 COMM 端子並聯一個電阻可優化 COMM 端子的電壓特性使系統更加穩定。

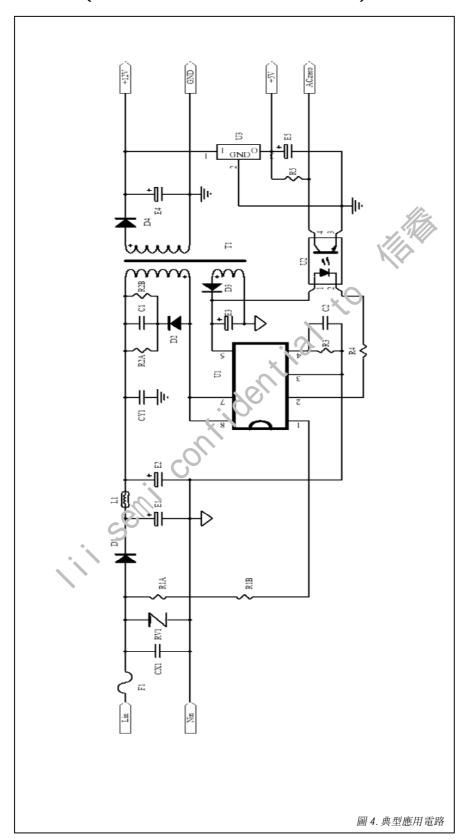
5、降頻控制電路

隨著負載降低電路會逐漸降低系統 的工作頻率,從而改善輕載效率,同時 降低待機狀態下的功耗。

6、高效的驅動電路

高效的驅動電路使開關管始終工作 於臨界飽和驅動狀態,提高三極管的開 關速度,從而有效地減小了三極管的開 關損耗,提高整個系統的工作效率同時 大大減小了芯片的發熱,使系統工作更 可靠。

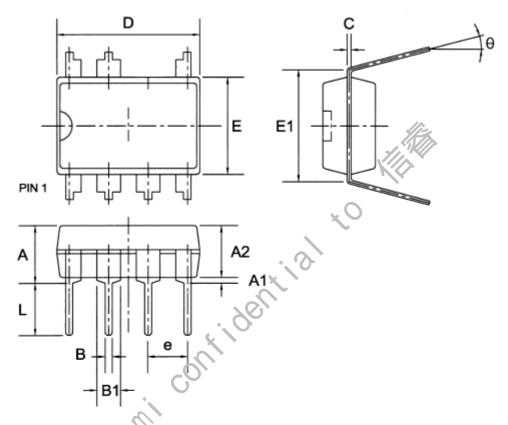
7、熱保護功能


若內部溫度高於 140℃,溫度保護電路將從內部逐漸拉低 COMM 電壓降低開關電流大小,從而減小輸出功率,使 IC 溫

度不超過 150℃, 并在芯片溫度無法平衡 時關斷輸出, 實現過溫保護。

儘管電路具有較高的轉換效率,芯片內部仍會消耗一定的功率,對於一個典型的功率開關而言,應使用必要的散熱措施,以避免過高的溫度導致熱保護或性能下降。IC內部主要的發熱是開關管的開關損耗產生的熱量,因此恰當的散熱位置通過IC的 河內-8 腳,一個易於使用的方法是在 PIn7-8 腳鋪設一定面積的PCB銅箔,必要時將銅箔鍍錫處理將大大增加散熱能力。對於一個 90~300V輸入.5W 輸出的典型應用,50mm²的以上的銅箔面積是必要的。

典型應用電路 (12V300mA+5V50mA小家電電源)



元器件清單

序號	名稱	規格	數量	位置	備註
1	電阻	105, 5%, 1206	2	R1A, R1B	
2		224, 5%, 1206	2	R2A, R2B	
3		103, 5%, 0805	2	R3, R5	
4		332, 5%, 0805	1	R4	
5	電容	102/1KV, 1206	1	C1	
6		104/50V, 0805	1	C2	
7	X 電容	0. 1uF/275V	1	CX1	1/2
8	Y 電容	102/400Vac	1	CY1	
9	壓敏電阻	7D511	1	RV1	
10	電解	4. 7uF/400V	2	E1, E2 X	
11		22uF/16V	1	E3	
12		470uF/16V	1	E4 0	
13		100uF/16V	1,0	£5	
14	二極體	1N4007, D041	0	D1	
15		FR107, D041	2	D2, D3	
16		HER103, D041	1	D4	
17	電感	3.3mH,0510,色環	1	L1	
18	保險絲	21A150V	1	F1	
19	變壓器	EE16S, 2.4mH	1	T1	
20	IC .	LC1206A, DI P7	1	U1	Lii semiconductor
21	•	PC817C, DI P4	1	U2	
22		78L05, T092	1	U3	
				-	

外形尺寸

DIP7

Oumbal	Dimen	sions In Mill	meters	Dimensions In Inches		
Symbol	M'A	Nom	Max	Min	Nom	Max
Α .	_		4.31	_	_	0.170
A1	0.38			0.015		_
A2	3.15	3.40	3.65	0.124	0.134	0.144
В	0.38	0.46	0.51	0.015	0.018	0.020
B1	1.27	1.52	1.77	0.050	0.060	0.070
С	0.20	0.25	0.30	0.008	0.010	0.012
D	8.95	9.20	9.45	0.352	0.362	0.372
E	6.15	6.40	6.65	0.242	0.252	0.262
E1		7.62		_	0.300	
е	_	2.54		_	0.100	
L	3.00	3.30	3.60	0.118	0.130	0.142
θ	0	_	15°	0°	_	15 °

訂購信息

型號	環保封裝	封裝	包裝方式
LC1206A	Pb Free	DI P7	50PCS/TUBE

聲明

力生美、Liisemi、 等均為力生美半導體器件有限公司的商標或注冊商標,未經書面允許任何單位、公司、個人均不得擅自使用,所發布產品規格書之著作權均受相關法律法規所保護,力生美半導體保留全部所有之版權,未經授權不得擅自複制其中任何部分或全部之內容用於商業目的。

產品規格書僅為所描述產品的特性說與之用,僅為便於使用相關之產品,力生美半導體不承諾對文檔之錯誤完全負責,並不承擔任何因使用本文檔所造成的任何損失,本著產品改進的需要,力生美半導體有權在任何時刻對本文檔進行必要的修改,並不承擔任何通知之義務。

力生美半導體系列產品均擁有相關技術之自主專利,並受相關法律法規保護,未經授權不得擅自複制、抄襲或具有商業目的的芯片反向工程,力生美半導體保留相關依法追究之權利。

力生美半導體不對將相關產品使用於醫學、救護等生命設備所造成的任何損失承擔責任或連帶責任,除非在交易條款中明確約定。

最新信息請訪問:

www.liisemi.com